py-tools for modeling gaseous nebulae

Christophe Morisset Instituto de Astronomia, Mexico <u>chris_morisset@gmail.com</u>

summary

- python: no way, you need to know it ;-)
- PyNeb: determine physico-chimico parameters of the nebula
- pyCloudy:
 - easy managing Cloudy from python
 - grids
 - pseudo-3D models
- 3MdB: a database of Cloudy models

python

- need to learn it: mostly use language in astronomy and in the world
- python 2.7 vs. 3.6: now it's time to switch to 3.
- a lot of tutorials (e.g. <u>https://github.com/Morisset/</u> <u>Python-lectures-Notebooks</u>)
- stackoverflow site: answers almost all the questions.

Installing python

- Better use a package manager.
- For example: Anaconda <u>https://anaconda.org/</u>
- Comes with almost all the useful libraries
- conda install **Or** pip install
- easy way to have python 2.7 and 3.6 on the same computer
- The best is using ipython (interactive mode)

Notebooks

This is the easy way to build manuals.

jupyter notebook

execute cell with SHIFT+ENTER

A Introduction to Python for dummies...

This is part of the Python lecture given by Christophe Morisset at IA-UNAM.

In [1]: # The following is to know when this notebook has been run and with which python version. import time, sys print(time.ctime()) print(sys.version.split('|')[0])

Fri Jun 30 12:57:36 2017 3.6.1

Using Python as a calculator

Using of "print" command is not necesary to obtain a result. Just type some operations and the result is obtain with ENTER.

In [1]:	2 + 22
Out[1]:	24
In [2]:	(2+3)*(3+4)/(5*5)
Out[2]:	1.4
In [3]:	(2+3) * (3+4.) / (5*5)
Out[3]:	1.4
In [4]:	<pre># If you are using python 2.X, the default behaviour is not this one. # Do the following to be sure you are using the python 3.N division: fromfuture import division</pre>
	Python likes the use of spaces to make scripts more readable
	The art of writing good python code is described in the following document: http://legacy.python.org/dev/peps/pep-0008/
	Assignments
	Like any other langage, you can assign a value to a variable. This is done with = symbol:
In [5]:	a = 4
	A lot of operations can be performed on the variables. The most basics are for example:
In [6]:	a
Out[6]:	4

PyNeb

- python library to:
 - determine and apply reddening corrections
 - determine electron temperature and density from line ratios; also crossing Te-Ne using 2 diagnostics
 - determine ionic abundances from line intensities and Te-Ne.
 - determine elemental abundances using ICFs
- It helps to define starting points for the model.

PyNeb diagnostic diagrams

• Each diagnostic has its validity domain.

PyNeb

- web page: <u>https://pypi.python.org/pypi/PyNeb</u>
- Manual: <u>https://github.com/Morisset/</u> <u>PyNeb_devel/tree/master/docs</u>
- Reference Manual: <u>https://morisset.github.io/</u> <u>PyNeb_Manual/html/index.html</u>
- group: <u>https://groups.google.com/forum/#!forum/</u> <u>pyneb</u>

pyCloudy

- Library to manage Cloudy from python
- web page with examples: <u>https://</u> <u>sites.google.com/site/pycloudy/</u>
- development web page: <u>https://github.com/</u> <u>Morisset/pyCloudy</u>
- group: <u>https://groups.google.com/forum/#!forum/</u> <u>pycloudy</u>

3MdB

- A database of already run Cloudy models for PNe, HII regions and DIG.
- Acces via mySQL.
- Very easy using pymysql and pandas libraries.
- Visit <u>https://sites.google.com/site/</u> <u>mexicanmillionmodels/</u>

pyCloudy for Cloudy summer school

https://github.com/Morisset/Cloudy_Summer_School/