

Break into 6 groups, do 6 radii

- Radius (log, cm)
 - _ 13
 - **15**
 - **17**
 - -19 -21
 - -23
- Find following in main output
 - Temperature, H ionization,

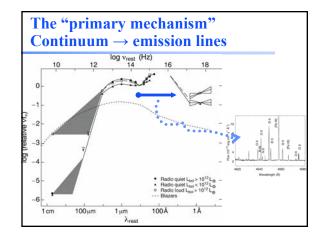
The grid command – Hazy1 Chap 18

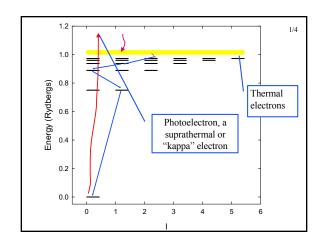
- Grid command compute a grid of models in parallel
- Include "vary" keyword on commands with variable parameters (Chapter 17.4)
- "grid" command specifies lower, upper bounds, and step size
 - Radius 13 varv
 - -grid 13 23 2
 - Hazy 1 sec 18.5
- "Save grid" command saves step parameters
- "no hash", "last", options on other save commands
- ◆ (See this page for description of -a runtime)

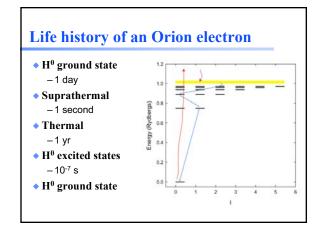
Chapt 3 Heating and cooling

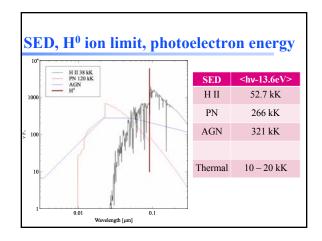
- Free electrons have a kinetic temperature, the only real temperature in the gas
- Heating is any process that gives energy to the gas, increasing the temperature
- Cooling is any process that removes energy from the gas, lowering the temperature
- Thermal equilibrium is when heating and cooling rates match
- Often radiation is the only heating & cooling

A Maxwellian velocity distribution 0.002 0.002 0.001 0.000


Thermal equilibrium


- Heating gives kinetic energy to the gas
 - radiation field in photoionization case
 - by mechanical energy in shock
 - In coronal case an external process sets temperature
- Cooling is anything that converts kinetic energy into light that escapes


Photoelectric heating


$$G(\mathbf{H}) = n(\mathbf{H}^{0}) \int_{\nu_{0}}^{\infty} \frac{4\pi J_{\nu}}{h\nu} h\left(\nu - \nu_{0}\right) a_{\nu}(\mathbf{H}^{0}) d\nu \left[\text{erg cm}^{-3} s^{-1}\right]. \tag{3.1}$$

◆ Depends on SED shape

Photoelectric heating

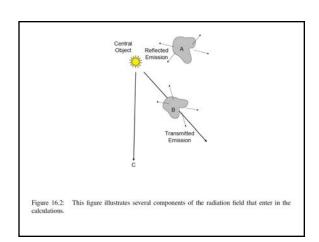
- Heating proportional to photoionization rate, which is equal to n_e n_p α, the recombination rate
- Heating depends on density squared

$$G(\mathbf{H}) = n_e n_p \alpha_{\mathbf{A}}(\mathbf{H}^0, T) \frac{\int_{v_0}^{\infty} \frac{4\pi J_v}{hv} h(v - v_0) a_v(\mathbf{H}^0) dv}{\int_{v_0}^{\infty} \frac{4\pi J_v}{hv} a_v(\mathbf{H}^0) dv}$$

$$= n_e n_p \alpha_{\mathbf{A}}(\mathbf{H}^0, T) \frac{3}{2} k T_i$$
(3.2)

Let's try different SEDs

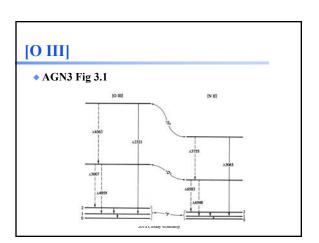
- Density 1 cm⁻³, constant temperature, one zone, same ionization parameter
- Report "Average nu" and "Te" in main output


SED	Average nu	T(e) K
BB 2.5e4 K		
BB 3e4 K		
BB 5e4 K		
BB 1e5 K		
BB 1.5e5 K		
Table agn		
Table power law		

In HII.in

- ◆ Set radius to 10^18 cm
 - -Radius 18
- Change "blackbody" value

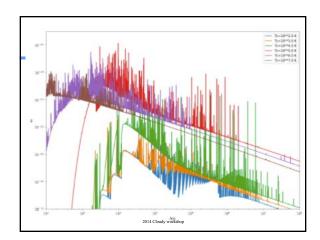
Photoelectric heating vs depth

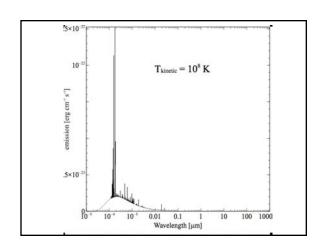

- In homework H II region, why did temperature fall, increase, then fall catastrophically?
- Dependence on depth
 - Spectrum, heating, across H+ region
 - Homework problem
 - Save continuum output
- Save heating

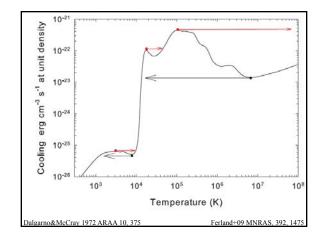
Cooling

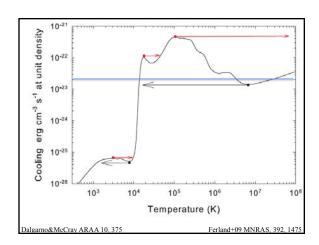
- Anything that converts kinetic energy (heat) into light (which escapes)
- AGN3 Chap 3 lists a number of processes
- Collisional excitation of lines is normally the most important cooling process

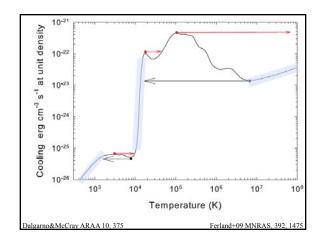
$$L_C = n_e \, n_1 \, q_{12} \, h \nu_{21}. \tag{3.22}$$

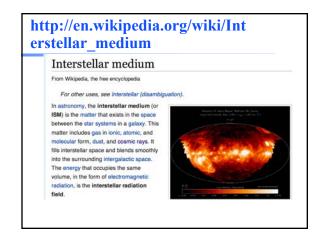

Coronal equilibrium


- Mechanical energy sets kinetic temperature
- "Coronal" command in Cloudy
- No ionizing radiation
- Collisional ionization, due to collision by thermal electrons

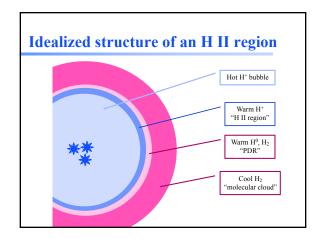


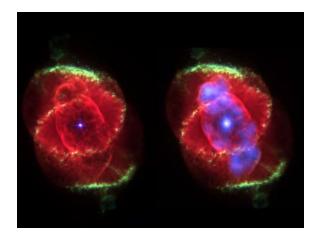

Try different temperatures


- ◆ Coronal command
 - -Log T=2, 3, 4, 5, 6, 7, 8
- Unit cell
- Must include "cosmic ray background" and grains when molecules are significant
- Plot spectrum
 - X-axis log wavelength from 1e-4 to 1e3 microns
 - Y-axis linear intensity, with strongest line at the top









Star forming H II regions • Hot young stars very close to the molecular cloud that formed it • Ionizing radiation and stellar winds strike nearby molecular cloud

Make spectra of stable phases

- Cold, warm, hot stable phases
- Ccurve.in
 - Remove grid, vary option
- -Leave ISM abundances
- Save continuum (units microns), cooling
- Compute stable points
 - -T=5e2K 2e4K, 8e4K, 1.5e6K, 2e7K

Three-phase pressure stability

tsuite / auto / ism_grid

Heating – cooling balance

- Both heating and cooling depend on square of density
- So no density dependence
- Try it! compare temperatures at two densities

Vary Metals – constant temperature

- Set constant temperature, look at [O III] lines relative to Hβ as metallicity varies
- !! Combine with next slide

Vary Metals –temperature balance

- Try constant temperature case first,
 VaryZct
- Then energy balance

– varyZ

Thermostat effect

- Vary metals with temperature balance
- ◆ Look at line ratios, temperature vs Z
- Cooling and heating vs Z
- ◆ Thermostat effect line spectrum does not change dramatically when Z changes
 - Heating and cooling are equal
 - -Cooling is mainly O III lines
 - So they are constant when they are the main coolant

Vary blackbody temperature

- Stoy or "energy balance" method of determining stellar temperatures
- Give stoy reference in AGN3

Three cases

- hiis.in set radiation field, properties of cloud determined self consistently
 - This is how we usually use Cloudy
- coronal.in no radiation, but gas kinetic temperature set by external physics. Ionization and emission set by gas kinetic temperature
- constant temperature models may include radiation but kinetic temperature set by external physics. Ionization determined by both radiation field and gas temperature
 - Hazy1 Chap 11