

Simultaneous solution of

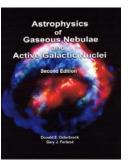
Gas ionization

- -From ionization balance equations
- Chemistry
- Large network based on UMIST
- Gas kinetic temperature
 Heating and cooling
- Level populations and emission
- Grain physics
- Charging, CX, photoejection, quantum heating
- The observed spectrum
 - Radiative transport

Cloudy is a microphysics code

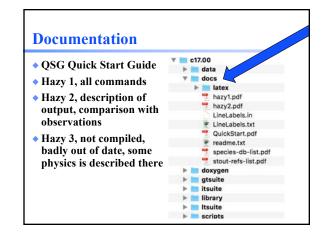
- Emphasis is on getting the atomic and molecular physics right
- If we get the microphysics right, the macrophysics will take care of itself
- Other codes have dynamics, shocks, 3D, as an emphasis, sometimes using Cloudy to get the microphysics

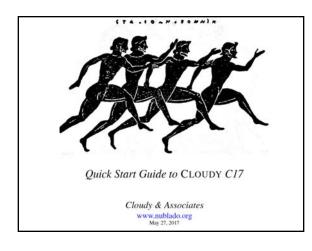
On the web


http://cloud9.pa.uky.edu/~gary/cloudy/CloudySummerSchool

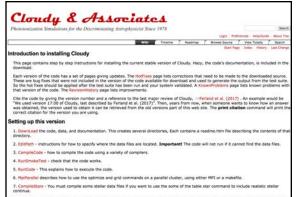
- Agenda for the workshop

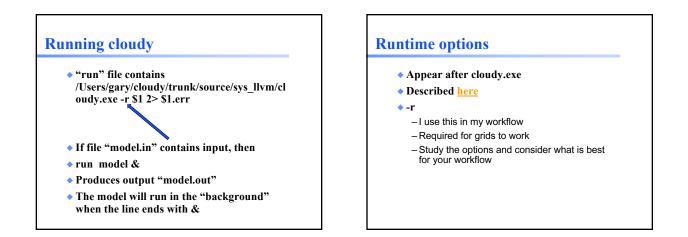
 Includes copies of presentations
- Participant interests
- ftp site with documentation, and examples

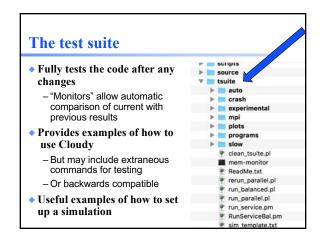

Osterbrock & Ferland Astrophysics of Gaseous Nebulae

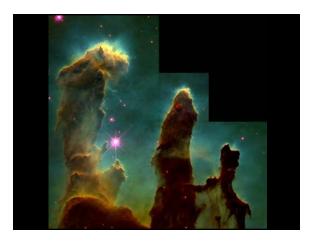

- There are three versions, this is the 3rd
 Don called this on AGN3
- Any version is OK
- PDFs of some sections are in the docs folder of the ftp site

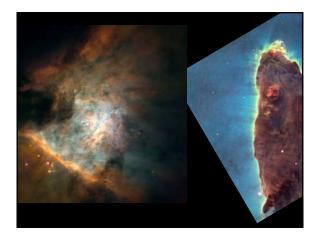
Cloudy version C17

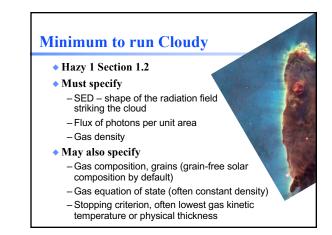

- We set this up, ran a model, and created plots, as our homework last week
- PDFs of the Quick Start Guide, and the first two volumes of Hazy, its documentation, are in the docs folder of the ftp site
- Copies of the last three major reviews of Cloudy are also in the docs folder of the ftp site

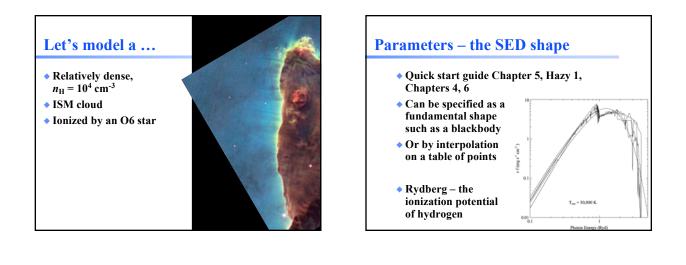


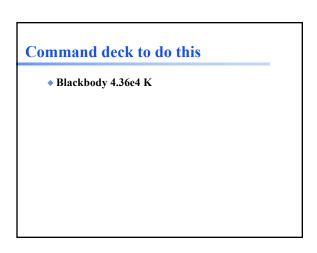


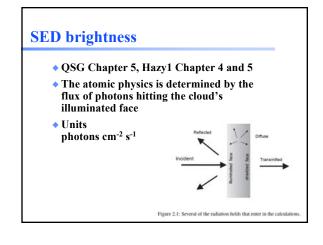

8. TestSuite is a large number of test cases that you should run to confirm that all is well. This is a critical step since it will check for bugs in your compiler. That directory also contains a group of programs that show how to call the code as a subroutine.




Conversations	Photos In Files About More
Topics Messag	jos
Calculated emiss	ivities to
Sony, correction: the	grid line is grid 8000 40000 1000 linear We seem to get good results, but the magnitudes
	mpting to attach a .png
gardnerc413 · 2 pot	558 - 8:19 PM
Introducing Gaus	sian noise to ato
Section 3.3 of the 20	13 release paper states that the code includes the ability to randomly add Gaussian noise
to some parameters.	I'd like to apply this to
t_cooper * 1 post	- 2:56 PM
Level populations	l
Dear Prof. Ferland, M	tany thanks for the reply. I'll look forward to the next version Cloudy. Best regards,
Tamara.	
ermolaeva.gao * 4 p	Et nut. + atex
Simulation warning	ng: Transfer ionization reached 900% o
	he explanations () I will check that Cheers Vital

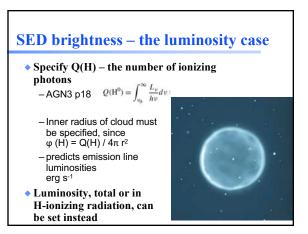


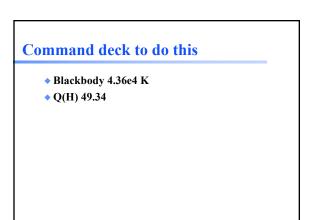




Calculated Strömgren radii as function of spectral types spheres					AGN3	
Spectral type	<i>T</i> • (K)	M _V	log Q(H ⁰) (photons/s)	$log n_e n_p r_1^3$ n in cm ⁻³ ; r_1 in pc	$log n_e n_p r_1^3$ n in cm ⁻³ ; r_1 in pc	$r_1 (pc)$ $n_e = n_p$ $= 1 \text{ cm}^{-3}$
03 V	51,200	-5.78	49.87	49.18	6.26	122
04 V	48,700	-5.55	49.70	48.99	6.09	107
04.5 V	47,400	-5.44	49.61	48.90	6.00	100
05 V	46,100	-5.33	49.53	48.81	5.92	94
05.5 V	44,800	-5.22	49.43	48.72	5.82	87
06 V	43,600	-5.11	49.34	48.61	5.73	81
06.5 V	42,300	-4.99	49.23	48.49	5.62	75
07 V	41,000	-4.88	49.12	48.34	5.51	69
07.5 V	39,700	-4.77	49.00	48.16	5.39	63
08 V	38,400	-4.66	48.87	47.92	5.26	57
08.5 V	37,200	-4.55	48.72	47.63	5.11	51
09 V	35,900	-4.43	48.56	47.25	4.95	45
09.5 V	34,600	-4.32	48.38	46.77	4.77	39
B0 V	33,300	-4.21	48.16	46.23	4.55	33
B0.5 V	32,000	-4.10	47.90	45.69	4.29	27
O3 III	50,960	-6.09	49.99	49.30	6.38	134
B0.5 III	30,200	-5.31	48.27	45.86	4.66	36
O3 Ia	50,700	-6.4	50.11	49.41	6.50	147
09.5 Ia	31,200	-6.5	49.17	47.17	5.56	71

Commands – Hazy1 Chap 3

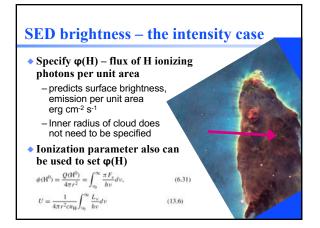

- Free format keywords and numbers
- Commands end with empty line or *****
- Many numbers are logs, check Hazy1 carefully

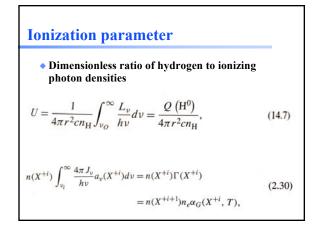

SED brightness

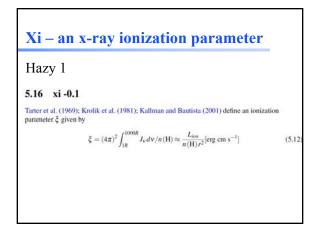
• QSG Chapter 5, Hazy1 Chapter 4 and 5

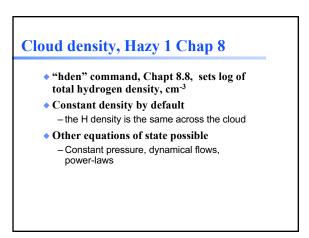
- Luminosity case
 - Specify total photon luminosity
 - Predict line luminosities
- Intensity case
 - In a resolved source, often work with surface brightness, or line intensity
 - Specify flux of photons striking cloud, predict emission per unit volume

Calculated Strömgren radii as function of spectral types spheres					AGN3		
Spectral type	<i>T</i> • (K)	M _V	log Q(H ⁰) (photons/s)	$log n_e n_p r_1^3$ n in cm ⁻³ ; r_1 in pc	$log n_e n_p r_1^3$ n in cm ⁻³ ; r_1 in pc	$r_1 (pc)$ $n_e = n_p$ $= 1 cm^{-3}$	
03 V	51,200	-5.78	49.87	49.18	6.26	122	
O4 V	48,700	-5.55	49.70	48.99	6.09	107	
04.5 V	47,400	-5.44	49.61	48.90	6.00	100	
05 V	46,100	-5.33	49.53	48.81	5.92	94	
05.5 V	44,800	-5.22	49.43	48.72	5.82	87	
06 V	43,600	-5.11	49.34	48.61	5.73	81	
06.5 V	42,300	-4.99	49.23	48.49	5.62	75	
07 V	41,000	-4.88	49.12	48.34	5.51	69	
07.5 V	39,700	-4.77	49.00	48.16	5.39	63	
08 V	38,400	-4.66	48.87	47.92	5.26	57	
08.5 V	37,200	-4.55	48.72	47.63	5.11	51	
09 V	35,900	-4.43	48.56	47.25	4.95	45	
09.5 V	34,600	-4.32	48.38	46.77	4.77	39	
B0 V	33,300	-4.21	48.16	46.23	4.55	33	
B0.5 V	32,000	-4.10	47.90	45.69	4.29	27	
O3 III	50,960	-6.09	49.99	49.30	6.38	134	
B0.5 III	30,200	-5.31	48.27	45.86	4.66	36	
O3 Ia	50,700	-6.4	50.11	49.41	6.50	147	
09.5 Ia	31,200	-6.5	49.17	47.17	5.56	71	

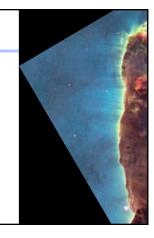


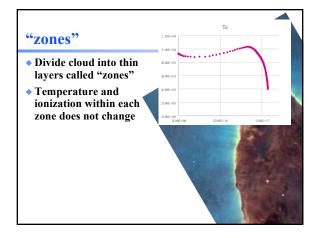

Radius command, Chap 9.10


- If luminosity is set then the radius, the separation between the star and the illuminated face of the cloud, must also be specified
- Radius command
 - -log radius in cm by default
 - Linear, or parsecs, can be used by setting optional keywords
- Let's put our cloud 10¹⁶ cm from the star


Command deck to do this

- Blackbody 4.3e4 K
- Q(H) 49.34
- Radius 16
- We will try different radii later

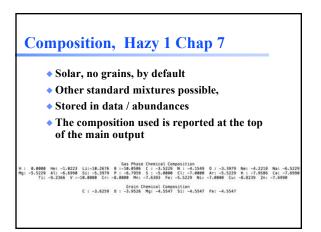



Let's model a ...

- Relatively dense, $n_{\rm H} = 10^4 \, {\rm cm}^{-3}$
- ISM cloud
- Ionized by an O6 star

Command deck to do this

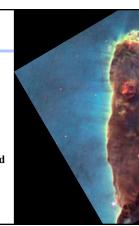
- Blackbody 4.3e4 K
- ◆ Q(H) 49.34
- Radius 16
- Hden 4



A "unit cell"

- We will sometimes model a cubic cm of matter
 - Lots faster 7 simpler
 - A "unit cell", 1 cm³
- These commands do a single "zone" that is log(dr)=0 (or 1 cm) thick

Command deck so far


- Blackbody 4.3e4 K
- Q(H) 49.34
- Radius 16
- Hden 4
- stop zone 1
- set dr 0

[–] stop zone 1 – set dr 0

Let's model a ...

- Relatively dense, $n_{\rm H} = 10^4 \, {\rm cm}^{-3}$
- ISM cloud
- Ionized by an O6 star
- The ISM is dusty, and some elements are depleted by condensation onto dust
- Abundances ISM – Chapt 7.4.3

Command deck so far

- Blackbody 4.36e4 K
- ◆ Q(H) 49.34
- Radius 16
- Hden 4
- stop zone 1
- 🔷 set dr 0
- Abundances ISM

Background cosmic rays

- Interstellar chemistry requires a source of ionization to work
- To get over "activation barrier" in reactions
- The chemistry network will fail in unphysical ways if ionization is not present
- Galactic background cosmic rays provide this ionization in nature
- Cosmic rays background, Chapt 11.6.1

Command deck so far

- Blackbody 4.3e4 K
- Q(H) 49.34
- Radius 16
- Hden 4
- stop zone 1
- set dr 0
- Abundances ISM
- Cosmic rays background

"Save" output

- Requested with various "save" commands

 Hazy 1 Section16.35 and later
- This is the main way I extract results
- Keyword to specify what to save
- Filename to set where to save it
- Set save prefix "name"
 Prepends "name" to all save files

A note on quotation marks

- Office products will put "smart quotes" in our examples
- C++ requires straight quotes.

set path "example"
save overview ".ovr"

Save files

- Save emitted continuum "filename"
 - Photon energy is Rydberg by default
 - Change to microns with keyword units
 - Units microns
- Save overview
 - Useful information such as gas temperature and ionization

Save element name

- Saves ionization of element specified

Command deck so far

- Set save prefix "HII"
- -Blackbody 4.3e4 K
- -Q(H) 49.34
- Radius 16
- Hden 4
- -stop zone 1
- -set dr 0
- Abundances ISM
- Cosmic rays background
- Save overview ".ovr" last no hash
- Save element hydrogen ".hyd" last no hash
- Save emitted continuum ".econ" units microns

The "main output"

- The *.out file created when code is executed -QSG 7.1 & Hazy 2 Chapter 1
- Gas & grain composition
- Physical conditions in first and last zone
- Emission-line spectrum
- Mean quantities

Warnings, cautions, notes

- Cloudy is designed to be autonomous and self aware
- Generates notes, cautions, or warnings, if conditions are not appropriate.

Iculation stopped because NIGNE reached. Iteration 1 of 1 e geosetry is plane-parallel. Atiunum zero a toome energies. H Uyama continuum is thin, and I assumed that it was thick. Use the TT FM I continuum is thin and issumed that it was thick. Use the TT struction of he ITriS reached 32.0% of the total hed dest rate at zone collisional excitation of 10 III 4830 reached 2.0% of the total. El Cloud ape was not set. Longest timescale was 5.46+08 m = 1.7teal aim photoelectric heating in Yest Important. e OMB was not included. This is added with the CMB command.

Check end of output

Cloudy ends: 1 zone, 1 iteration, 4 cautions. (single thread) ExecTime(s) 8.80 [Stop in cdMain at ../maincl.cpp:517, Cloudy exited OK]

Break into 6 groups, do 6 radii

- Radius. (log, cm)
 - -13 - 15
 - 17
 - 19
 - -21
 - -23