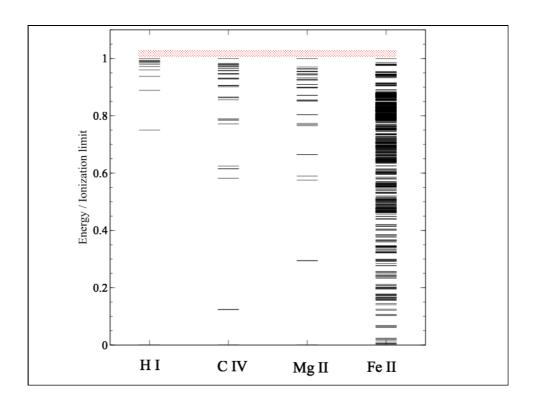
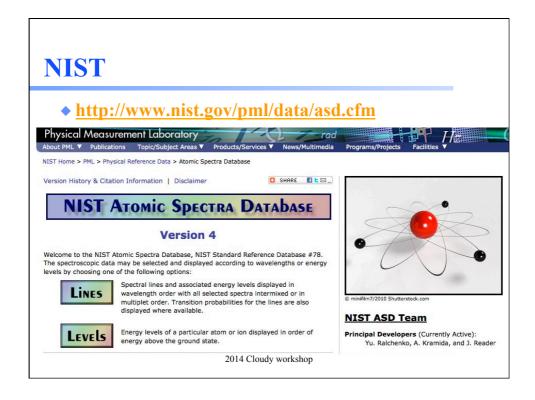
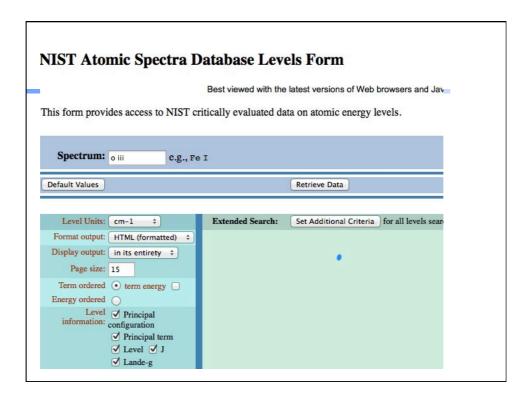
Thoughts from yesterday


- ◆ The CMB
 - Radio telescopes automatically subtract off the CMB when the observation is made
 - So faint lines, much fainter than the CMB in the total Cloudy prediction, are easily observed
- Beam switching, frequency switching

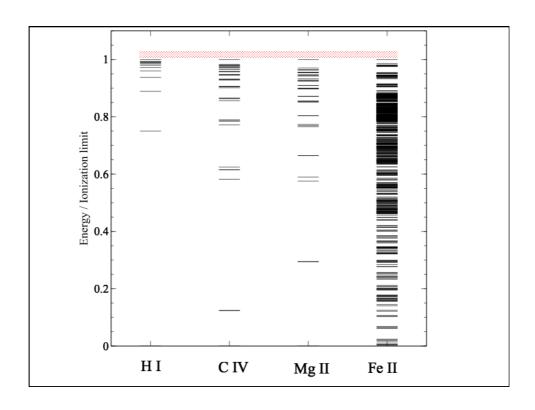
What happened with the laser?

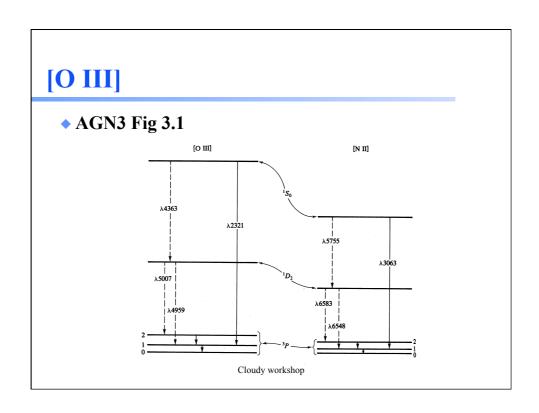
- The sum of the cooling lines matches the heating
- So that sum can't change (energy balance)
- ◆ The [O III] lines are normally the strongest single coolants for an H II region, so they can't change unless the heading (set by the SED) changes
- ◆ The [O III] lines were not the strongest coolant's with the laser. They were with the star.

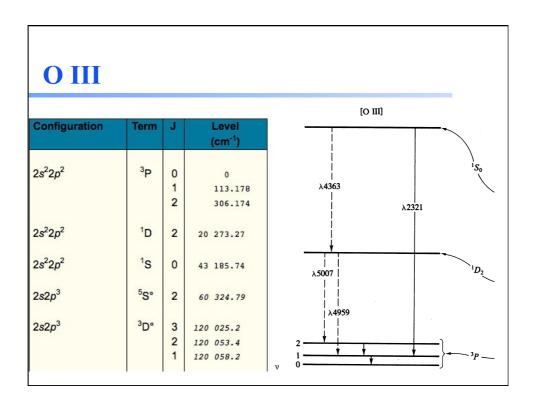

Why use the laser at all?


- Cloudy has lots of lines and does many levels for many ions
- ◆ A single zone (which we do for speed) is optically thin
- So continuum fluorescent excitation can be important.
- But would not be with a finite column density

Peter's atomic line list


- http://www.pa.uky.edu/~peter/atomic/
- Search wavelength range to find what lines are present





Two types of lines

- Recombination AGN3 sec 4.2
 - e + p radiative recombination
 - $-q\sim10^{-13}$ cm³ s⁻¹
 - Mainly H, He
- Collisionally excited AGN3 3.5
 - Inelastic e + ion collision
 - $-q\sim10^{-9}$ cm³ s⁻¹
 - Heavy elements

Species vs spectra

- ♦ H⁰, C³⁺, O²⁺, H₂, CO are baryons
- ◆ H I, C IV, O III, H₂, and CO are the spectra they emit / absorb
- ◆ O III is a permitted line produced by O²⁺, while [O III] is forbidden

Species vs spectra

- H I Lya emission can be produced by
 - Recombination of H⁺
 - Impact excitation of H⁰
- ◆ H I absorption can only be produced by H⁰
- ◆ H I is not the same as H⁰
 - Ambiguous for emission lines

Finding lines in Cloudy

- Run smoke test with command
- **♦** Save line labels
- Spectral label, wavelength, identifies a line
- Save file has label, wavelength, comment about line
- **◆** Pick lines from this save file

Luminosity, relative intensity

- **◆ Intensity or luminosity of line**
 - depending on case
- Intensity relative to normalization line, default $H\beta$
 - Change with normalize command

0	3	88.3323m	-5.577	1.5126
0	3	51.8004m	-5.106	4.4704
0	3	4931.23A	-8.339	0.0026
0	3	4958.91A	-4.876	7.5973
0	3	5006.84A	-4.401	22.6702
0	3	2320.95A	-7.193	0.0366
0	3	4363.21A	-6.593	0.1456
0	3	1660.81A	-7.187	0.0371
0	3	1666.15A	-6.720	0.1087

Emissivity vs density, temperature

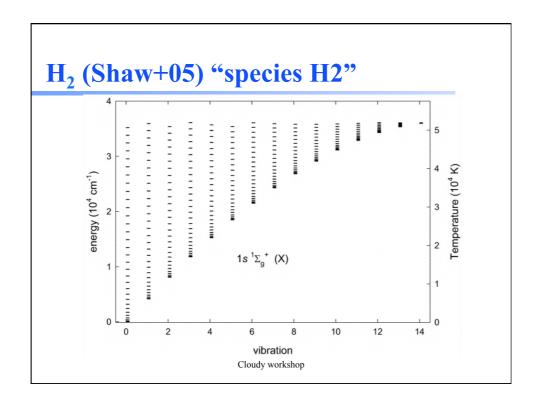
Recombination line, O III forbidden lines

Two level atom AGN3 Sec 3.5

- Excitation, deexcitation rates
- Transition probabilities
- Critical density
- **◆** Two limits
 - Low densities, every excitation leads to emission of a photon
 - high densities, levels are n LTE, photon emission proportional to n_u A_{ul}

Cloudy workshop

Recombination lines


- $H^+ + e \rightarrow H^{0*} \rightarrow H^0 + photons$
- ◆ Critical densities of H I, He I, and He II optical lines are very high, n > 1e15 cm⁻³, so they are usually in LDL
- ◆ Emissivity goes as n²

Forbidden lines

- **♦** [O III]
- O⁺⁺ + e → O^{++*} → O⁺⁺ + photons
- Critical densities of many forbidden lines n
 1e3 cm⁻³, so they can be in LDL or HDH
- ◆ Emissivity goes as n² or n

2014 Cloudy workshop

Inward vs total emission

Controlling model atoms

- Series of SPECIES XXX commands
- Compare exec time species limit vs small