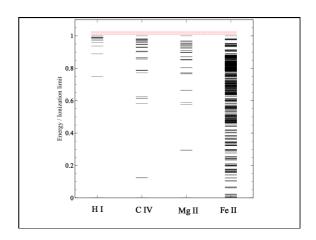


Peter's atomic line list * http://www.pa.uky.edu/~peter/atomic/ * Search wavelength range to find what lines are present



O III [O III] $2s^22p^2$ 0 1 2 113.178 306.174 2s²2p² ¹D 2 20 273.27 $2s^22p^2$ 43 185.74 2s2p3 5S° 2 60 324.79 3 2 1 2s2p3 3D° 120 053.4 120 058.2

Species vs spectra

- ◆ H⁰, C³⁺, O²⁺, H₂, CO are baryons
- H I, C IV, O III, H₂, and CO are the spectra they emit / absorb
- O III is a permitted line produced by O²⁺, while [O III] is a forbidden line
- C III] is a semi-forbidden line, often an intercombination line

Species vs spectra

- H I Lya emission can be produced by
 - Recombination of H+
 - Impact excitation of Ho
- H I absorption can only be produced by H⁰
- ♦ H I is not the same as H⁰
 - Ambiguous for emission lines

Lines in the main output

- ♦ Print lines column
- Print lines sort wavelength
- Print lines faint

Finding lines in Cloudy

- Run smoke test with command
- Save line labels
- Spectral label, wavelength, identifies a line
- Save output file has label, wavelength, comment about line
- Pick lines from this save file

Line blends

- ◆ Blnd 3727
- ♦ Blnd 2798
- ♦ Blnd 1549
- Two or more lines that appear as a single line in most spectra

Luminosity, relative intensity

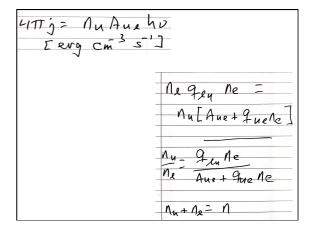
- Intensity or luminosity of line
 depending on case
- Intensity relative to normalization line, default $H\beta$
 - Change with normalize command

0	3	88.3323m	-5.577	1.5126
0	3	51.8004m	-5.106	4.4704
0	3	4931.23A	-8.339	0.0026
0	3	4958.91A	-4.876	7.5973
0	3	5006.84A	-4.401	22.6702
0	3	2320.95A	-7.193	0.0366
0	3	4363.21A	-6.593	0.1456
0	3	1660.81A	-7.187	0.0371
0	3	1666.15A	-6.720	0.1087

Why use the laser at all

- Cloudy has lots of lines and does many levels for many ions
- A single zone (which we do for speed) is optically thin
- So continuum fluorescent excitation can be important.
- But would not happen with a finite column density
- Show fig with energy levels for H, C IV etc and say continuum photons would excite to all upper levels

Why we set the ionization


- ♦ If most O were O3+ the process
- O3++e -> O2++hn
- Would be fast, and would make O III recombination lines
- This can happen in nature, but it would confuse our homework problem

Emissivity vs density, temperature

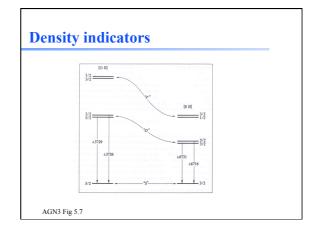
• Recombination line, O III forbidden lines

Two level atom AGN3 Sec 3.5

- Excitation, deexcitation rates
- Transition probabilities
- Critical density
- **◆** Two limits
 - Low densities, every excitation leads to emission of a photon
 - high densities, levels are n LTE, photon emission proportional to n_u A_{ul}

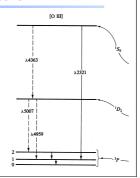
Vary density over extreme range

 Plot emissivity vs density over wide range to see how emissivity changes


Recombination lines

- H⁺ + e → H^{0*} → H⁰ + photons
- Critical densities of H I, He I, and He II optical lines are very high, n > 1e15 cm⁻³, so they are usually in LDL
- ◆ Emissivity goes as n² for n < 10²⁰ cm⁻³
- Case B predictions
- H I, He I, He II are the strongest in UV/ Opt/ IR
- Second row (C,N, O, Ne) & Fe in X-ray

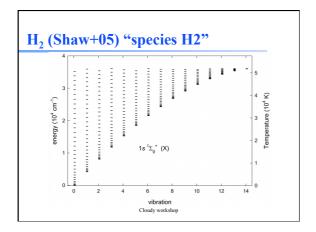
Forbidden lines


- [O III]
- O⁺⁺ + e → O^{++*} → O⁺⁺ + photons
- ◆ Critical densities of many forbidden lines n ~ 1e3 cm³, so they can be in LDL or HDH
- Emissivity goes as n² or n

Compute spectrum of clouds with two very different densities

Temperature indicators

 Lines from same species which have different excitation potentials


Inward vs total emission

- "Inwd" label for line
- Inward/outward emission computed on second and later iterations
 - Iterate to convergence
 - Print last

• Hazy 1, sec 16.43.2, 19.14.44 - Line to continuum contrast in save continuum - Command SET SAVE LINE WIDTH

Databases in Cloudy

- Stout (atoms & low ionization)
- Chianti (higher ionization)
- ◆ LAMDA (heavy-element molecules)

Controlling model atoms

- ♦ Series of SPECIES XXX commands
- ◆ Compare exec time species limit vs small

Cloudy workshop