Minimum to run Cloudy

Must specify

- SED shape of the radiation field
- Flux of photons per unit area
- Gas density

May specify

- Gas composition, grains (grain-free solar by default)
- Gas equation of state (often constant density)
- Stopping criterion, often physical thickness

SED brightness – the luminosity case

• Specify Q (H) - photon luminosity

– Inner radius of cloud must be specified, since φ (H) = Q(H) / 4π r² – predicts emission line luminosities erg s⁻¹

Cloud density, Hazy 1 Chap 8

- "hden" command set H density cm⁻³
- Constant density by default – the H density is the same across the cloud
- Other equations of state possible
 Constant pressure, flows, power-laws

Composition, Hazy 1 Chap 7

- Solar, no grains, by default
- Other standard mixtures possible,
- Stored in data / abundances
- We will often use "abundances ISM" to get ISM grains plus depleted ISM abundances

Let's model a ...

- Relatively dense, n_H = 10⁴ cm⁻³
- ISM cloud
- One parsec away from an
- O6 star

curculated	ouonigren	atomgren radii as function of spectral types spheres				
Spectral type	$T_{\bullet}(\mathbf{K})$	M _V	log Q(H ⁰) (photons/s)	$log n_e n_p r_1^3$ n in cm ⁻³ ; r_1 in pc	$ \begin{array}{l} \log n_e n_p r_1^3 \\ n \mbox{ in cm}^{-3}; \\ r_1 \mbox{ in pc} \end{array} $	$r_1 (pc)$ $n_e = n_p$ $= 1 cm^{-3}$
03 V	51,200	-5.78	49.87	49.18	6.26	122
04 V	48,700	-5.55	49.70	48.99	6.09	107
04.5 V	47,400	-5.44	49.61	48.90	6.00	100
05 V	46,100	-5.33	49.53	48.81	5.92	94
O5.5 V	44,800	-5.22	49.43	48.72	5.82	87
06 V	43,600	-5.11	49.34	48.61	5.73	81
O6.5 V	42,300	-4.99	49.23	48.49	5.62	75
07 V	41,000	-4.88	49.12	48.34	5.51	69
07.5 V	39,700	-4.77	49.00	48.16	5.39	63
08 V	38,400	-4.66	48.87	47.92	5.26	57
08.5 V	37,200	-4.55	48.72	47.63	5.11	51
09 V	35,900	-4.43	48.56	47.25	4.95	45
09.5 V	34,600	-4.32	48.38	46.77	4.77	39
B0 V	33,300	-4.21	48.16	46.23	4.55	33
B0.5 V	32,000	-4.10	47.90	45.69	4.29	27
O3 III	50,960	-6.09	49.99	49.30	6.38	134
B0.5 III	30,200	-5.31	48.27	45.86	4.66	36
O3 Ia	50,700	-6.4	50.11	49.41	6.50	147
O9.5 Ia	31,200	-6.5	49.17	47.17	5.56	71

Make plot of total opacity and emissivity for zone 1

Beyond the H⁺ layer

- Little H⁺ ionizing radiation gets past the H⁺ layer
- Deeper regions are atomic or molecular
- Also cold and produce little visible light
- Large extinction due to dust

Why did the simulation stop?

- Make plot of H⁺ fraction vs depth
- Various stopping reasons given in Hazy 2, Sec 7.6
- Default is to stop when gas temperature falls below 4000 K, probably a region near the H⁺ - H⁰ ionization front.
 But is this what you want?

Definitions – AGN3 Appendix 1

Ionization fractions

- Fraction of an element in that ionization state
- Kirchoff's laws of spectroscopy
 - Hot transparent gas makes emission lines
 - Cool gas in front of continuum source make absorption lines
 - Warm optically thick makes continuum, perhaps blackbody
- Luminosity
 - Energy emitted per second

Definitions

- Emissivity 4πj [erg cm⁻³ s⁻¹]
 Emission per unit volume, per second
- Optical depth T
 - Number of mean free paths through a medium
- Opacity κ cm² atomic property of material – τ = κN
- Planck function B = j/κ
- Rob Rutten's course notes describe this and more

 http://www.staff.science.uu.nl/~rutte101/ Radiative Transfer.html