

Cloudy

- Accurate simulation of physical processes at the atomic & molecular level
 - "universal fitting formulae" to atomic processes fail when used outside realm of validity, and are not used
- Assumptions:
 - energy is conserved
 - -(usually) atomic processes have reached steady state
- Limits:
 - Kinetic temperature 2.7 K < T < 10^{10} K
 - No limits to density (low density limit, LTE, STE)
 - Radiation field 30 m to 100 MeV

Simultaneous solution of

- Gas ionization
 - From ionization balance equations
- Chemistry
 - -Large network based on UMIST
- Gas kinetic temperature
 - Heating and cooling
- Grain physics
 - Charging, CX, photoejection, quantum heating
- The observed spectrum
 - Radiative transport

Cloudy and its physics

- Osterbrock & Ferland 2006, Astrophysics of Gaseous Nebulae and Active Galactic Nuclei, 2nd edition (AGN3)
- Ferland+2013, Rev Mex 49, 137, The 2013 Release of Cloudy
- Ferland 2003, ARA&A, 41, 517, Quantitative Spectroscopy of Photoionized Clouds

Some applications to astronomy

- Hamann & Ferland, ARA&A, 37, 487, Elemental Abundances in Quasistellar Objects: Star Formation and Galactic Nuclear Evolution at High Redshifts
- Ferland 2001, PASP, 113, 41, Physical Conditions in the Orion H II Region
- ◆ And the ~200 papers that cite its documentation each year

Open source since 1978

- All versions, all data, on svn at nublado.org
- ◆ You are most welcome to help!

Definitions

- Ionization fractions
 - Fraction of an element in that ionization state
- ◆ Kirchoff's laws of spectroscopy
 - Hot transparent gas makes emission lines
 - Cool gas in front of continuum source make absorption lines
 - Warm optically thick makes continuum, perhaps blackbody
- Luminosity
 - Energy emitted per second

Definitions

- Emissivisity 4πj
 - Emission per unit volume, per second
- ◆ Optical depth T
 - Number of mean free paths through a medium
- Opacity κ
 - $-\tau = \kappa n$
- Planck function $B = j/\kappa$
- Rob Rutten's course notes describes this and more
 - http://www.staff.science.uu.nl/~rutte101/ Radiative Transfer.html

Running cloudy

- "run" file contains path-to-cloudy.exe -r \$
- If file "model.in" contains input, then
- run model &
- Produces output "model.out"

The test suite • Fully tests the code after any ▶ a doxygen changes atsuite ▶ 📋 itsuite - "Monitors" allow automatic ▶ 🛅 Itsuite comparison of current with previous source **▼** isuite Provides examples of how to use ▶ 🚞 auto Cloudy ▶ iii crash - But may include extraneous ▶ i experimental commands for testing ▶ 🛅 mpi ▶ 🚞 programs - Or backwards compatible ▶ 🚞 slow Useful examples of how to set up a clean_tsuite.pl simulation run_parallel.pl run_service.pl

The "main output"

- The *.out file created when code is executed
 QSG 7.1 & Hazy 2 Chapter 1
- Gas & grain composition
- Physical conditions in first and last zone
- Emission-line spectrum
- Mean quantities
- Cloudy is designed to be autonomous and self aware
- Will generate notes, cautions, or warnings, is conditions are not appropriate.

"Save" output

- Requested with various "save" commands
 Hazy 1 Section16.35 and later
- The main way the code reports its results

Minimum to run Cloudy

- Must specify
 - SED shape of the radiation field
 - Flux of photons per unit area
 - Gas density
- May specify
 - Gas composition, grains (grain-free solar by default)
 - Gas equation of state (often constant density)
 - Stopping criterion, often physical thickness

Parameters – the SED shape

- Quick start guide Chapter 5
- ♦ Hazy 1, Chapters 4, 6
- Can be specified as a fundamental shape such as a blackbody
- Generally entered as table of points

SED brightness – the luminosity case

- ◆ Specify Q (H) photon luminosity
 - Inner radius of cloud must be specified, since $\phi \; (H) = Q(H) \; / \; 4\pi \; r^2$
 - predicts emission line luminosities erg s⁻¹

SED brightness — the intensity case • Specify φ(H) — flux of photons per unit area — The "intensity case" — predicts surface brightness, emission per unit area erg cm² s⁻¹ — Inner radius of cloud does not need to be specified • Ionization parameter can be used to set φ(H)

A "unit cell" • We will model a cubic cm of matter in many of the atomic calculations • A "unit cell", 1 cm³ • Intensity case plus commands - Stop zone 1 - Set dr 0

Cloud density, Hazy 1 Chap 8

- "hden" command set H density cm-3
- Constant density by default
 - the H density is the same across the cloud
- Other equations of state possible
 - Constant pressure, flows, power-laws

Composition, Hazy 1 Chap 7

- Solar, no grains, by default
- Other standard mixtures possible,
- ◆ Stored in data / abundances

Life history of an Orion electron • H⁰ ground state -1 day • Suprathermal -1 second • Thermal -1 yr • H⁰ excited states -10⁻⁷ s • H⁰ ground state

Plot components of radiation field

- Incident stellar continuum
- ◆ Total continuum produced
- Reflected continuum

Photoionization

- Highest cross section at lowest photon energies
- AGN3 Fig 2.2

Make plot of total opacity for zone 1 of H II region

- Nb make this plot so that it can be directly compared with hardening of radiation field example on next day
- Do in ryd and list important edges

Recombination AGN3 Chap 2

- Electron and ion recombine, emitting energy
- Radiative recombination for H and He
- Dielectronic recombination for heavy elements

	T				
	1,250 K	2,500 K	5,000 K	10,000 K	20,000 K
$\alpha_A = \sum_{1}^{\infty} \alpha_n$	1.74×10^{-12}	1.10 × 10 ⁻¹²	6.82×10^{-13}	4.18×10^{-13}	2.51 × 10 ⁻¹³
$\alpha_B = \sum_{n=1}^{\infty} \alpha_n$	1.28×10^{-12}	7.72×10^{-13}	4.54×10^{-13}	2.59×10^{-13}	1.43 × 10 ⁻¹³
$\alpha_C = \sum_{3}^{\infty} \alpha_n$	1.03×10^{-12}	5.99×10^{-13}	3.37×10^{-13}	1.87×10^{-13}	9.50 × 10 ⁻¹⁴
$\alpha_D = \sum_{4}^{\infty} \alpha_n$	8.65×10^{-13}	4.86×10^{-13}	2.64×10^{-13}	1.37×10^{-13}	6.83 × 10 ⁻¹⁴

Strömgren length

 Number of ionizing photons entering layer is balance by number of recombinations along it

$$\varphi(H) = \Lambda_e \cap \varphi \propto L$$

$$L \propto \frac{\varphi(H)}{\Lambda_e \cap \varphi}$$

Matter vs radiation bounded

Beyond the H⁺ layer

- Little H⁺ ionizing radiation gets past the H⁺ layer
- Deeper regions are atomic or molecular
- Also cold and produce little visible light
- Large extinction due to dust

Why did the simulation stop?

- Make plot of H⁺ fraction vs depth
- Various stopping reasons given in Hazy 2, Sec 7.6
- Default is to stop when gas temperature falls below 4000 K, probably a region near the H⁺ - H⁰ ionization front.
 - But is this what you want?